Mathematical Argumentation Based on Refutations

Authors

  • Jonathan Alberto Cervantes-Barraza UNIVERSIDAD DEL ATLÁNTICO
  • Maria Guadalupe Cabañas Sánchez UNIVERSIDAD AUTÓNOMA DE GUERRERO

https://doi.org/10.17583/redimat.4015

Downloads

Abstract

The study aims to identify the implications of refutation in arguments with elementary school students. The reconstruction and analysis of the arguments and refutations among fifth and sixth grade students in the context of the solution of mathematical tasks related to the classification of triangles according to the measure of their interior angles is presented. Theoretically, the study is based on the basic concepts of the argumentation and proof research line, in particular mathematical argumentation, reasoning and refutation are addressed. Findings of the study document the implications of the refutation of conclusions in the context of solving mathematical tasks at the elementary level, and it is recognized that students build improved arguments based on characteristics and properties of triangles.

Downloads

Download data is not yet available.

Author Biographies

Jonathan Alberto Cervantes-Barraza, UNIVERSIDAD DEL ATLÁNTICO

Candidato a Doctor en Ciencias con especialidad en Matemática Educativa de la universidad Autónoma de Guerrero, México.

Maria Guadalupe Cabañas Sánchez, UNIVERSIDAD AUTÓNOMA DE GUERRERO

Guadalupe Cabañas Sánchez es una profesora del departamento de matemáticas en la Universidad Autónoma de Guerrero, Mexico. Investiga sobre argumentación y prueba en matemáticas, algebra temprana, razonamiento matemático y formación de profesores.

References

Common Core State Standards Initiative (CCSSI) (2010). Common Core State Standards for Mathematics (CCSSM). National Governors Association Center for Best Practices and Council of Chief State School Officers.

Google Scholar Crossref

Conner, A. (2008). Expanded Toulmin diagrams: a tool for investigating complex activity in classrooms. En O. Figueras, J. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.). Proceedings of International Group for the Psychology of Mathematics Education (Vol 2, pp. 361-368). México, Morelia.

Google Scholar Crossref

Conner, A., Singletary. L., Smith. R., Wagner. P., y Francisco, R. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities, Educational Studies Mathematics, 86 (2), 401–429. https://doi.org/10.1007/s10649-014-9532-8

Google Scholar Crossref

Cervantes-Barraza, J. A. y Cabañas-Sánchez, G. (2018). Argumentos formales y visuales en argumentaciones colectivas. Educación Matemática, 30(1), 148-168.

Google Scholar Crossref

Cabañas-Sánchez, G. y Cervantes-Barraza, J. A. (2019) Principios que fundamentan el diseño de tareas matemáticas en una planificación didáctica. Revista Uno, 85, 7-12.

Google Scholar Crossref

Cervantes-Barraza, J. A., Cabañas-Sánchez, G. y Mercado-Porras, K. (2020). El rol del profesor en la construcción de conocimiento matemático a través de la argumentación colectiva. En H. Hernández, J. Juárez, J. Slisko (Eds.). Tendencias en la Educación Matemática Basada en la Investigación, PP. 214-2.

Google Scholar Crossref

Cervantes-Barraza, J. & Cabañas-Sánchez, G. (2021). Teacher promoting student mathematical arguments through questions. En M. Inprasitha, N. Changsri & N. Boonsena (Eds.), Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education, Interim Vol. (pp. 81-89). Khon Kaen, Thailand: PME

Google Scholar Crossref

Gal, H., y Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74, 163–183. https://doi.org/10.1007/s10649-010-9232-y

Google Scholar Crossref

Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modeling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66(1), 3–21. https://doi.org/10.1007/s10649-006-9059-8

Google Scholar Crossref

Inglis, M., y Mejia-Ramos J. (2005). La fuerza de la aserción y el poder persuasivo en la argumentación en matemáticas. Revista EMA: Investigación e Innovación en Educación Matemática, 10, 327-352.

Google Scholar Crossref

Kaur, H., y Sinclair, N. (2014). Young children’s thinking about various types of triangles in a dynamic geometry environment. In C. Nicole, S. Oesterle, P. Lijedahl, & D. Allan, (Eds.) Proceedings of the Joint Meeting of PME 38 and PME-NA 36, (Vol. 5, pp. 113-120). Vancouver, Canada.

Google Scholar Crossref

Knipping, C., y Reid D. (2015). Reconstructing argumentation structures: A Perspective on proving Processes in Secondary Mathematics Classroom Interactions. In A. Bikner-Ahsbahs, C. Knipping y N. Presmeg (Eds.), Approaches to Qualitative Research in Mathematics Education: Examples of methodology and methods (pp. 75-101). Springer. https://doi.org/10.1007/978-94-017-9181-6_4

Google Scholar Crossref

Ko, Y.Y. y Knuth, E. (2009). Undergraduate mathematics majors’ writing performance producing proofs and counterexamples about continuous functions. Journal of Mathematical Behavior, 28 (1), 68–77. https://doi.org/10.1016/j.jmathb.2009.04.005

Google Scholar Crossref

Komatzu, K., y Jones, K. (2017). Proofs and refutations in school mathematics: A task design in dynamic geometry environments. In Thérèse Dooley, Viviane Durand-Guerrier, Ghislaine Gueudet (Eds.), Proceedings of Tenth Congress of the European Society for Research in Mathematics Education (pp. 104-112). Dublin, Ireland.

Google Scholar Crossref

Krummheuer, G. (1995). The ethnology of argumentation. In P. Cobb and H. Bauersfeld (Eds.), The Emergence of Mathematical Meaning: Interaction in Classroom Cultures (pp. 229–269). Erlbaum.

Google Scholar Crossref

Krummheuer, G. (2015). Methods for Reconstructing Processes of Argumentation and Participation in Primary Mathematics Classroom Interaction. In A. Bikner-Ahsbahs, C. Knipping., & N. Presmeg (Eds.), Approaches to Qualitative Research in Mathematics Education: Examples of methodology and methods (pp. 75-101). Springer. https://doi.org/10.1007/978-94-017-9181-6_3

Google Scholar Crossref

Larios, V., Arellano, C., y Gonzalez, N. (2018). Análisis de Argumentos Producidos por Alumnos de Bachillerato al Resolver Problemas de Geometría. REDIMAT, Journal of Research in Mathematics Education, 7(2), 280-310. http://dx.doi.org/10.4471/redimat.2018.2343

Google Scholar Crossref

Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: a critical appraisal. Learning and Instruction, 11, 357–380. https://doi.org/10.1016/S0959-4752(00)00037-2

Google Scholar Crossref

Ministerio de Educación Nacional (MEN). (2006). Estándares Básicos de Competencias en Matemáticas. Bogotá, D. C.

Google Scholar Crossref

Molina, M., Castro, E., Molina, J., y Castro, E. (2012).Un acercamiento a la investigación de diseño a través de los experimentos de enseñanza. Enseñanza de las ciencias, 29(1), 075–088

Google Scholar Crossref

National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school mathematics. Author.

Google Scholar Crossref

Pedemonte, B., & Balacheff, N. (2016). Establishing links between conceptions, argumentation and proof through the ck¢-enriched Toulmin model, Journal of Mathematical Behavior, 41, 104–122. https://doi.org/10.1016/j.jmathb.2015.10.008

Google Scholar Crossref

Ponte, J. P. (2005). Gestão curricular em Matemática. In GTI (Ed.), O professor e o desenvolvimento curricular (pp. 11-34). APM. Rassmusean

Google Scholar Crossref

Reid, D., Knipping, C. y Crosby, M. (2011). Refutations and the logic of practice. PNA, 6(1), 1-10. https://doi.org/10.30827/pna.v6i1.6148

Google Scholar Crossref

Reid, D., y Vallejo, E. (2017). Proof-based teaching as a basis for understanding why. In T. Dooley, V. Durand-Guerrier, & Gueudet. G (Eds.), Proceedings of Tenth Congress of the European Society for Research in Mathematics Education (pp.9-17), Dublin, Ireland.

Google Scholar Crossref

Rumsey, C., & Langrall, C. W. (2016). Promoting mathematical argumentation. Teaching children mathematics, 22(7), 413-419. https://doi.org/10.5951/teacchilmath.22.7.0412

Google Scholar Crossref

Secretaría de Educación Pública (SEP) (2011). Plan de estudios. México, Distrito federal

Google Scholar Crossref

Smith, M., & Stein, M. (1998). Selecting and creating mathematical task, form research to practice. Mathematics teaching in the middle school, 3(5), 344-350. https://doi.org/10.5951/MTMS.3.5.0344

Google Scholar Crossref

Solar, H. y Delofeu, J. (2016). Condiciones para promover el desarrollo de la competencia de argumentación en el aula de matemáticas. Bolema, 30(56), 1092- 1112. http://dx.doi.org/10.1590/1980-4415v30n56a13

Google Scholar Crossref

Toulmin, S. (1958/2003). The uses of argument. Cambridge University Press.

Google Scholar Crossref

Toulmin, S., Rieke. R., y Janik, A. (1984). An introduction to reasoning (2nd ed.). Macmillan

Google Scholar Crossref

Whitenack, J., y Knipping, N. (2002). Argumentation, instructional design theory and student’s mathematical learning: a case for coordinating interpretive lenses. Journal of Mathematical Behavior, 24(4), 441-457. https://doi.org/10.1016/S0732-3123(02)00144-X

Google Scholar Crossref

Yackel, E. (2002). What we can learn from analyzing the teacher’s role in collective argumentation. Journal of Mathematical Behavior, 21(4), 423–440. https://doi.org/10.1016/S0732-3123(02)00143-8

Google Scholar Crossref

Downloads

Published

2022-06-24

Almetric

Dimensions

Issue

Section

Articles