Learning the Concept of Linear Function by Implementing a Sequence on the Motion of Objects

Authors

https://doi.org/10.17583/redimat.14938

Keywords:


Abstract

The concept of function is perhaps one of the most important in mathematics. Its importance lies not only in relating variables of different nature, but also in its vast applications across various scientific disciplines. However, its teaching and learning have become topics of interest for research in mathematics didactics. Based on the terms of objectification, semiotic means and joint labor of the Theory of Objectification, this article analyzes the learning process of the meaning of linear function in three high school students (14-15 years old) as they deal, for the first time, with a didactic sequence in which the rectilinear motion of objects is graphically represented and tabulated. The methodology was qualitative, in its case study modality. The results indicate that, during the sequence, students identify the correspondence between variables and manage to write algebraic expressions from the information in the graphs. The article concludes with a discussion of the pedagogical implications of the design of this sequence.

Downloads

Download data is not yet available.

References

Calle, E., Breda, A., & Font, V. (2023). Significados parciales del teorema de Pitágoras usados por docentes en la creación de tareas en el marco de un programa de formación continua. Uniciencia, 37(1), 1-23. https://doi.org/10.15359/ru.37-1.1

Google Scholar Crossref

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (6a. ed). Taylor & Francis.

Google Scholar Crossref

D’Amore, B., & Radford, L. (2017). Enseñanza y aprendizaje de las matemáticas: Problemas semióticos, epistemológicos y prácticos. Universidad Distrital Francisco José de Caldas.

Google Scholar Crossref

DeJarnette, A. F., McMahon, S., & Hord, C. (2020). Interpretations of slope through written and verbal interactions between a student and her tutors in Algebra 1. REDIMAT, 9(2), 121-146. https://doi.org/10.17583/redimat.2020.4242

Google Scholar Crossref

Dubinsky, E., & Harel, G. (Eds.). (1992). The concept of function: Aspects of epistemology and pedagogy. Mathematical Association of America.

Google Scholar Crossref

Ebersbach, M., Van Dooren, W., & Vershaffel, L. (2011). Knowledge on accelerated motion as measured by implicit and explicit tasks in 5 to 16 years old. International Journal of Science and Mathematics Education, 9(1), 25-46. https://doi.org/10.1007/s10763-010-9208-5

Google Scholar Crossref

Eisenberg, T. (2002). Functions and associated learning difficulties. En D. Tall (Ed.), Advanced mathematical thinking (Vol. 11, pp. 140-152). Kluwer Academic Publishers.

Google Scholar Crossref

Günster, S. M., & Weigand, HG. (2020). Designing digital technology tasks for the development of functional thinking. ZDM Mathematics Education, 52(7), 1259–1274. https://doi.org/10.1007/s11858-020-01179-1

Google Scholar Crossref

Kjeldsen, T. H., & Lützen, J. (2015). Interactions between mathematics and physics: The history of the concept of function-teaching with and about nature of mathematics. Science and Education, 24(5-6), 543–559. https://doi.org/10.1007/s11191-015-9746-x

Google Scholar Crossref

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64. https://doi.org/10.3102/00346543060001001

Google Scholar Crossref

Miranda, I., Radford. L., & Guzmán (2007). Interpretación de gráficas cartesianas sobre el movimiento desde el punto de vista de la teoría de la objetivación. Educación Matemática, 19(3), 5-30. https://doi.org/10.24844/EM1903.01

Google Scholar Crossref

Miranda, I., Radford. L., & Guzmán. (2013). Un origen matemático vs. dos orígenes fenomenológicos: la significación del movimiento de objetos respecto del punto (0,0). Journal of Research in Mathematics Education, 2(2), 183-208. https://doi.org/10.4471/redimat.2013.27

Google Scholar Crossref

Mirin, A., Weber, K., & Wasserman, N. (2020). What is a function. En A.I. Sacristán, J.C. Cortés-Zavala, P. M. Ruiz-Arias (Eds.), Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Mexico (pp. 1156-1164). Cinvestav/AMIUTEM/PME-NA. https://pmena2020.cinvestav.mx/Program-Proceedings/Proceedings

Google Scholar Crossref

Pinto, E., Cañadas, M. C. & Moreno, A. (2022). Functional relationships evidenced and representations used by third graders within a functional approach to early algebra. International Journal of Science and Mathematics Education, 20(6), 1183-1202. https://doi.org/10.1007/s10763-021-10183-0

Google Scholar Crossref

Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37-70. https://doi.org/10.1207/s15327833mtl0501_02

Google Scholar Crossref

Radford, L. (2006). Elementos de una teoría cultural de la objetivación [Special issue]. Revista Latinoamericana de Investigación en Matemática Educativa, 103-129.

Google Scholar Crossref

Radford, L. (2009). “No! He starts walking backwards!”: Interpreting motion graphs and the question of space, place and distance. ZDM Mathematics Education, 41(4), 467-480. https://doi.org/ 10.1007/s11858-009-0173-9

Google Scholar Crossref

Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1-19. https://doi.org/10.1080/14794800903569741

Google Scholar Crossref

Radford, L. (2013). Three key concepts of the theory of objectification: Knowledge, Knowing, and Learning. REDIMAT, 2(1), 7-44. https://doi.org/10.4471/redimat.2013.19

Google Scholar Crossref

Radford, L. (2020). ¿Cómo sería una actividad de enseñanza-aprendizaje que busca ser emancipadora? La labor conjunta en la teoría de la objetivación. Revista Colombiana de Matemática Educativa, 5(2), 15-31.

Google Scholar Crossref

Radford, L., & Roth, W.-M. (2011). Intercorporeality and ethical commitment: An activity perspective on classroom interaction. Educational Studies in Mathematics, 77(2-3), 227-245. https://doi.org/10.1007/s10649-010-9282-1

Google Scholar Crossref

Rolfes, T., Roth, J., & Schnotz, W. (2018). Effects of tables, bar charts, and graphs on solving function tasks. Journal für Mathematik-Didaktik, 39(1), 97-125. https://doi.org/10.1007/s13138-017-0124-x

Google Scholar Crossref

Sajka, M. (2003). A secondary school student’s understanding of the concept of function: A case study. Educational Studies in Mathematics, 53(3), 229-254. https://doi.org/10.1023/a:1026033415747

Google Scholar Crossref

Salinas-Hernández, U., & Miranda, I.(2018). Relating computational cartesian graphs to a real motion: An analysis of high school students’ activity. En N. Presmeg, L. Radford, W.-M. Roth, & G. Kadunz (Eds.), Signs of signification: Semiotics in mathematics education research (pp. 55-71). Springer. https://doi.org/10.1007/978-3-319-70287-2_4

Google Scholar Crossref

Sandoval-Troncoso, L., & Ledezma, C. (2021). Los gestos, una manera de comunicar matemática: El caso particular de las funciones. Educación Matemática, 33(2), 205–226. https://doi.org/10.24844/EM3302.08.

Google Scholar Crossref

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification-The case of function. En E. Dubinsky & G. Harel (Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy (pp. 59-84). Mathematical Association of America.

Google Scholar Crossref

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge University Press.

Google Scholar Crossref

Sierpinska, A. (1992). On understanding the notion of function. En E. Dubinsky y G. Harel (Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy (pp. 25-58). Mathematical Association of America.

Google Scholar Crossref

Speiser, B., Walter, C. & Maher, C. A. (2003). Representing motion: An experiment in learning. Journal of Mathematical Behavior, 22(1), 1-35. https://doi.org/10.1016/S0732-3123(03)00002-6

Google Scholar Crossref

Stake, R. E. (2005). Qualitative case studies. En N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE Handbook of Qualitative Research (3a ed., pp. 443–446). Sage Publications.

Google Scholar Crossref

Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2012). Modelling mathematical reasoning in Physics Education. Science and Education, 21(4), 485-506. https://doi.org/10.1007/s11191-011-9396-6

Google Scholar Crossref

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press. https://doi.org/10.2307/j.ctvjf9vz4

Google Scholar Crossref

Zheng, M., & Goldin-Meadow, S. (2002). Thought before language: How deaf and hearing children express motion events across cultures. Cognition, 85(2), 145-175. https://doi.org/10.1016/S0010-0277(02)00105-1

Google Scholar Crossref

Published

2024-10-24

Almetric

Dimensions

Issue

Section

Articles