Learning the Concept of Linear Function by Implementing a Sequence on the Motion of Objects
https://doi.org/10.17583/redimat.14938
Keywords:
Abstract
The concept of function is perhaps one of the most important in mathematics. Its importance lies not only in relating variables of different nature, but also in its vast applications across various scientific disciplines. However, its teaching and learning have become topics of interest for research in mathematics didactics. Based on the terms of objectification, semiotic means and joint labor of the Theory of Objectification, this article analyzes the learning process of the meaning of linear function in three high school students (14-15 years old) as they deal, for the first time, with a didactic sequence in which the rectilinear motion of objects is graphically represented and tabulated. The methodology was qualitative, in its case study modality. The results indicate that, during the sequence, students identify the correspondence between variables and manage to write algebraic expressions from the information in the graphs. The article concludes with a discussion of the pedagogical implications of the design of this sequence.
Downloads
References
Calle, E., Breda, A., & Font, V. (2023). Significados parciales del teorema de Pitágoras usados por docentes en la creación de tareas en el marco de un programa de formación continua. Uniciencia, 37(1), 1-23. https://doi.org/10.15359/ru.37-1.1
Google Scholar CrossrefCohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (6a. ed). Taylor & Francis.
Google Scholar CrossrefD’Amore, B., & Radford, L. (2017). Enseñanza y aprendizaje de las matemáticas: Problemas semióticos, epistemológicos y prácticos. Universidad Distrital Francisco José de Caldas.
Google Scholar CrossrefDeJarnette, A. F., McMahon, S., & Hord, C. (2020). Interpretations of slope through written and verbal interactions between a student and her tutors in Algebra 1. REDIMAT, 9(2), 121-146. https://doi.org/10.17583/redimat.2020.4242
Google Scholar CrossrefDubinsky, E., & Harel, G. (Eds.). (1992). The concept of function: Aspects of epistemology and pedagogy. Mathematical Association of America.
Google Scholar CrossrefEbersbach, M., Van Dooren, W., & Vershaffel, L. (2011). Knowledge on accelerated motion as measured by implicit and explicit tasks in 5 to 16 years old. International Journal of Science and Mathematics Education, 9(1), 25-46. https://doi.org/10.1007/s10763-010-9208-5
Google Scholar CrossrefEisenberg, T. (2002). Functions and associated learning difficulties. En D. Tall (Ed.), Advanced mathematical thinking (Vol. 11, pp. 140-152). Kluwer Academic Publishers.
Google Scholar CrossrefGünster, S. M., & Weigand, HG. (2020). Designing digital technology tasks for the development of functional thinking. ZDM Mathematics Education, 52(7), 1259–1274. https://doi.org/10.1007/s11858-020-01179-1
Google Scholar CrossrefKjeldsen, T. H., & Lützen, J. (2015). Interactions between mathematics and physics: The history of the concept of function-teaching with and about nature of mathematics. Science and Education, 24(5-6), 543–559. https://doi.org/10.1007/s11191-015-9746-x
Google Scholar CrossrefLeinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64. https://doi.org/10.3102/00346543060001001
Google Scholar CrossrefMiranda, I., Radford. L., & Guzmán (2007). Interpretación de gráficas cartesianas sobre el movimiento desde el punto de vista de la teoría de la objetivación. Educación Matemática, 19(3), 5-30. https://doi.org/10.24844/EM1903.01
Google Scholar CrossrefMiranda, I., Radford. L., & Guzmán. (2013). Un origen matemático vs. dos orígenes fenomenológicos: la significación del movimiento de objetos respecto del punto (0,0). Journal of Research in Mathematics Education, 2(2), 183-208. https://doi.org/10.4471/redimat.2013.27
Google Scholar CrossrefMirin, A., Weber, K., & Wasserman, N. (2020). What is a function. En A.I. Sacristán, J.C. Cortés-Zavala, P. M. Ruiz-Arias (Eds.), Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Mexico (pp. 1156-1164). Cinvestav/AMIUTEM/PME-NA. https://pmena2020.cinvestav.mx/Program-Proceedings/Proceedings
Google Scholar CrossrefPinto, E., Cañadas, M. C. & Moreno, A. (2022). Functional relationships evidenced and representations used by third graders within a functional approach to early algebra. International Journal of Science and Mathematics Education, 20(6), 1183-1202. https://doi.org/10.1007/s10763-021-10183-0
Google Scholar CrossrefRadford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37-70. https://doi.org/10.1207/s15327833mtl0501_02
Google Scholar CrossrefRadford, L. (2006). Elementos de una teoría cultural de la objetivación [Special issue]. Revista Latinoamericana de Investigación en Matemática Educativa, 103-129.
Google Scholar CrossrefRadford, L. (2009). “No! He starts walking backwards!”: Interpreting motion graphs and the question of space, place and distance. ZDM Mathematics Education, 41(4), 467-480. https://doi.org/ 10.1007/s11858-009-0173-9
Google Scholar CrossrefRadford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1-19. https://doi.org/10.1080/14794800903569741
Google Scholar CrossrefRadford, L. (2013). Three key concepts of the theory of objectification: Knowledge, Knowing, and Learning. REDIMAT, 2(1), 7-44. https://doi.org/10.4471/redimat.2013.19
Google Scholar CrossrefRadford, L. (2020). ¿Cómo sería una actividad de enseñanza-aprendizaje que busca ser emancipadora? La labor conjunta en la teoría de la objetivación. Revista Colombiana de Matemática Educativa, 5(2), 15-31.
Google Scholar CrossrefRadford, L., & Roth, W.-M. (2011). Intercorporeality and ethical commitment: An activity perspective on classroom interaction. Educational Studies in Mathematics, 77(2-3), 227-245. https://doi.org/10.1007/s10649-010-9282-1
Google Scholar CrossrefRolfes, T., Roth, J., & Schnotz, W. (2018). Effects of tables, bar charts, and graphs on solving function tasks. Journal für Mathematik-Didaktik, 39(1), 97-125. https://doi.org/10.1007/s13138-017-0124-x
Google Scholar CrossrefSajka, M. (2003). A secondary school student’s understanding of the concept of function: A case study. Educational Studies in Mathematics, 53(3), 229-254. https://doi.org/10.1023/a:1026033415747
Google Scholar CrossrefSalinas-Hernández, U., & Miranda, I.(2018). Relating computational cartesian graphs to a real motion: An analysis of high school students’ activity. En N. Presmeg, L. Radford, W.-M. Roth, & G. Kadunz (Eds.), Signs of signification: Semiotics in mathematics education research (pp. 55-71). Springer. https://doi.org/10.1007/978-3-319-70287-2_4
Google Scholar CrossrefSandoval-Troncoso, L., & Ledezma, C. (2021). Los gestos, una manera de comunicar matemática: El caso particular de las funciones. Educación Matemática, 33(2), 205–226. https://doi.org/10.24844/EM3302.08.
Google Scholar CrossrefSfard, A. (1992). Operational origins of mathematical objects and the quandary of reification-The case of function. En E. Dubinsky & G. Harel (Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy (pp. 59-84). Mathematical Association of America.
Google Scholar CrossrefSfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge University Press.
Google Scholar CrossrefSierpinska, A. (1992). On understanding the notion of function. En E. Dubinsky y G. Harel (Eds.), The Concept of Function: Aspects of Epistemology and Pedagogy (pp. 25-58). Mathematical Association of America.
Google Scholar CrossrefSpeiser, B., Walter, C. & Maher, C. A. (2003). Representing motion: An experiment in learning. Journal of Mathematical Behavior, 22(1), 1-35. https://doi.org/10.1016/S0732-3123(03)00002-6
Google Scholar CrossrefStake, R. E. (2005). Qualitative case studies. En N. K. Denzin & Y. S. Lincoln (Eds.), The SAGE Handbook of Qualitative Research (3a ed., pp. 443–446). Sage Publications.
Google Scholar CrossrefUhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2012). Modelling mathematical reasoning in Physics Education. Science and Education, 21(4), 485-506. https://doi.org/10.1007/s11191-011-9396-6
Google Scholar CrossrefVygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press. https://doi.org/10.2307/j.ctvjf9vz4
Google Scholar CrossrefZheng, M., & Goldin-Meadow, S. (2002). Thought before language: How deaf and hearing children express motion events across cultures. Cognition, 85(2), 145-175. https://doi.org/10.1016/S0010-0277(02)00105-1
Google Scholar CrossrefPublished
Almetric
Dimensions
Issue
Section
License
Copyright (c) 2024 Isaias Miranda; Lesly Anaid Vargas-Rivera; Ulises Salinas-Hernández
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal the right of first publication but allow anyone to share: (unload, , reprint, distribute and/or copy) and adapt (remix, transform reuse, modify,) for any proposition, even commercial, always quoting the original source.